ablassic
 Developed from experience produced for safe power supply.

Specifications

Classic OPzS batteries have been proven energy suppliers for decades, which captivate in robustness, extreme long design life and reliability
■ Very high operationally reliability under rough operating conditions

- Low maintenance due to reduced antimony in the alloy and high electrolyte reserve
■ Nominal capacity 50-3350 Ah C C $_{10}$; up to 12000 Ah on request
- 15 years design life at $20^{\circ} \mathrm{C}$ ambient temperature (80% remaining capacity from C_{10})
- Also designed for cyclic applications
■ Containers made from high-quality transparent plastics (blocks = ABS/cells = SAN)
- Tubular plates in block and single cell version
\square Also available in dry charged condition with separate electrolyte
- Low gassing due to antimony alloy < 3\% (EN 50272-2)
- Conforms to DIN 40736 and DIN 40737 T3
■ Electrolyte: diluted sulphuric acid $\mathrm{d}_{\mathrm{N}}=1.24 \mathrm{~kg} / \mathrm{l}$
\square Optimised plate design produces increased capacities compared to DIN
Completely recyclable

Applications

Classic OPzS batteries are robust energy storage solutions, with proven technology that has been relied upon for decades in applications such as telecommunications, power supply and power distribution, data, alarm security systems and emergency lighting as well as all other power supplies for safety systems.

Technical characteristics and data

OPzS block

Type acc. to DIN 40737 T3	Part number	Nomina voltage	Nominal capacity C_{10} $1.8 \mathrm{~V} / \mathrm{C}$ $20^{\circ} \mathrm{C}$ Ah	Length (I) max. mm	$\begin{array}{c\|} \hline \text { Width } \\ (\mathrm{b} / \mathrm{w}) \\ \\ \mathrm{max} . \\ \mathrm{mm} \end{array}$	Height (h) max. mm	Installed length (B/L)	Weight block including acid approx. kg	Weight acid ${ }^{\star \star}$ approx. kg	Internal resistance m Ω	Short circuit current A	Terminal	$\begin{array}{\|c\|} \hline \text { Pole } \\ \text { pairs } \end{array}$
12V 1 OPzS 50 LA	NVZS120050WCOFA	12	50	275	208	385	285	35	15	18.18	688	F-M8	1
12 V 2 OPzS 100 LA	NVZS120100WCOFA	12	100	275	208	385	285	45	14	9.26	1314	F-M8	1
12 V 3 OPzS 150 LA	NVZS120150WCOFA	12	150	383	208	385	393	64	19	6.46	1884	F-M8	1
6 V 4 OPzS 200 LA	NVZS060200WCOFA	6	200	275	208	385	285	41	13	2.68	2283	F-M8	1
6 V 5 OPzS 250 LA	NVZS060250WCOFA	6	250	383	208	385	393	56	20	2.39	2800	F-M8	1
6 V 6 OPzS 300 LA	NVZS060300WCOFA	6	300	383	208	385	393	63	20	1.96	3106	F-M8	1

The above mentioned height can differ depending on the used vent(s)

Data are also valid for dry charged version.
Change „W" (Wet) to „D" (Dry)
in the part number.
E.g.:
filled and charged NVZS120050W COFA
dry charged
NVZS120050 D COFA

Container, terminal and torque

Container: ABS

Drawings with terminal position

6 V block

12 V block

OPzS cell

Type acc. to DIN 40736 T 1	Part number	Nominal voltage v	Nominal capacity C_{10} $1.8 \mathrm{~V} / \mathrm{C}$ $20^{\circ} \mathrm{C}$ Ah	Length (I) max. mm	Width (b/w) max. mm	Height* (h) max. mm	Installed length (B/L) mm	Weight cell including acid approx. kg	Weight acid** approx. kg	Internal resistance	Short circuit current	Terminal	$\begin{aligned} & \hline \text { Pole } \\ & \text { pairs } \end{aligned}$
2 OPzS 100 LA	NVZS020100WCOFA	2	125	105	208	405	115	13.7	5.2	1.45	1400	F-M8	1
3 OPzS 150 LA	NVZS020150WCOFA	2	165	105	208	405	115	15.2	5.0	1.05	1950	F-M8	1
4 OPzS 200 LA	NVZSO20200WCOFA	2	210	105	208	405	115	16.6	4.6	0.83	2450	F-M8	1
5 OPzS 250 LA	NVZSO20250WCOFA	2	260	126	208	405	136	20.0	5.8	0.72	2850	F-M8	1
6 OPzS 300 LA	NVZS020300WCOFA	2	310	147	208	405	157	23.3	6.9	0.63	3250	F-M8	1
5 OPzS 350 LA	NVZS020350WCOFA	2	380	126	208	520	136	26.7	8.1	0.63	3250	F-M8	1
6 OPzS 420 LA	NVZSO20420WCOFA	2	455	147	208	520	157	31.0	9.3	0.56	3650	F-M8	1
7 OPzS 490 LA	NVZS020490WCOFA	2	530	168	208	520	178	35.4	10.8	0.50	4100	F-M8	1
6 OPzS 600 LA	NVZS020600WCOFA	2	680	147	208	695	157	43.9	13.0	0.47	4350	F-M8	1
7 OPzS 700 LA	NVZS020700WCOFA	2	750	147	208	695	157	47.2	12.8	0.43	4800	F-M8	1
8 OPzS 800 LA	NVZS020800WCOFA	2	910	215	193	695	225	59.9	17.1	0.30	6800	F-M8	2
9 OPzS 900 LA	NVZS020900WCOFA	2	980	215	193	695	225	63.4	16.8	0.27	7500	F-M8	2
10 OPzS 1000 LA	NVZS021000WCOFA	2	1140	215	235	695	225	73.2	21.7	0.26	7900	F-M8	2
12 OPzS 1200 LA	NVZS021200WCOFA	2	1370	215	277	695	225	86.4	26.1	0.23	8900	F-M8	2
12 OPzS 1500 LA	NVZS021500WCOFA	2	1700	215	277	845	225	108.0	33.7	0.24	8500	F-M8	2
14 OPzS 1750 LA	NVZS021750WCOFA	2	1800	215	277	845	225	114.0	32.7	0.22	9300	F-M8	2
16 OPzS 2000 LA	NVZS022000WCOFA	2	2250	215	400	815	225	151.0	50.0	0.16	12800	F-M8	3
18 OPzS 2250 LA	NVZSO22250WCOFA	2	2450	215	400	815	225	158.0	48.0	0.14	14600	F-M8	3
20 OPzS 2500 LA	NVZSO22500WCOFA	2	2800	215	490	815	225	184.0	60.0	0.12	17000	F-M8	4
22 OPzS 2750 LA	NVZSO22750WCOFA	2	3000	215	490	815	225	191.0	58.0	0.11	17800	F-M8	4
24 OPzS 3000 LA	NVZS023000WCOFA	2	3350	215	580	815	225	217.0	71.0	0.11	18600	F-M8	4

The above mentioned height can differ depending on the used vent(s)
${ }^{* *}$ Acid density $d_{N}=1.24 \mathrm{~kg} / \mathrm{l}$

Data are also valid for dry charged version. Change ",W" (Wet) to „D" (Dry) in the part number. E.g.: filled and charged NVZSO20200W COFA dry charged NVZSO20200 D COFA

Data are also valid for dry charged version.
Change "W" (Wet) to „D" (Dry)
in the part number.
E.g.:
filled and charged NVZSO20200 W COFA
dry charged
NVZS020200 D COFA

Container, terminal and torque

Container: SAN (StyrolacryInitril)

Drawings with terminal position

OPzS block

1.90 V/C - Discharge in A at $20^{\circ} \mathrm{C}$													
Type	Part number	5 min	10min	15 min	30min	1h	2 h	3h	4h	5 h	6h	8h	10h
12 V 1 OPzS 50 LA	NVZS120050WCOFA	32.0	29.0	25.0	21.3	16.1	11.7	9.7	8.2	7.0	6.3	5.6	5.0
12 V 2 OPzS 100 LA	NVZS120100WCOFA	66.5	58.0	52.2	41.5	31.5	24.5	17.4	15.0	13.7	12.5	10.6	8.9
12 V 3 OPzS 150 LA	NVZS120150WCOFA	99.0	84.0	76.0	64.0	47.2	34.1	26.4	22.3	19.7	17.7	14.6	12.0
6 V 4 OPzS 200 LA	NVZS060200WCOFA	120.0	105.0	96.0	85.0	62.0	46.0	35.3	30.0	26.7	24.1	19.8	16.1
6 V OPzS 250 LA	NVZS060250WCOFA	145.0	132.0	122.0	102.0	70.0	56.0	43.5	34.0	32.0	29.0	25.2	21.7
6 V 6 OPzS 300 LA	NVZS060300WCOFA	160.0	147.0	136.0	118.0	91.0	66.0	53.0	45.3	39.0	34.0	28.0	24.5

1.87 V/C - Discharge in A at $20^{\circ} \mathrm{C}$

Type	Part number	5 min	10 min	15 min	30 min	1 h	2 h	3 h	4 h	5 h	6 h	8 h	10h
12V 1 OPzS 50 LA	NVZS120050WCOFA	40.0	35.0	31.0	25.5	19.4	13.6	11.2	9.3	8.2	7.2	6.0	5.5
12V 2 OPZS 100 LA	NVZS120100WCOFA	80.0	70.0	62.0	50.0	37.9	27.2	19.9	16.9	15.2	13.7	11.5	9.5
12V 3 OPZS 150 LA	NVZS120150WCOFA	120.0	102.0	90.0	75.0	55.0	39.5	30.0	25.4	22.0	19.8	16.4	13.8
6V 4 OPZS 200 LA	NVZS060200WCOFA	150.0	132.0	120.0	100.0	72.4	52.0	40.0	33.2	29.4	26.8	22.2	18.0
6V 5 OPZS 250 LA	NVZS060250WCOFA	180.0	161.0	140.0	118.0	88.7	63.2	50.0	42.0	36.7	33.4	28.1	23.3
6V 6 OPZS 300 LA	NVZS060300WCOFA	195.0	176.0	160.0	135.0	104.0	76.5	59.2	51.0	44.0	38.0	32.0	27.0

$1.85 \mathrm{~V} / \mathrm{C}$ - Discharge in A at $20^{\circ} \mathrm{C}$

Type	Part number	5 min	10 min	15min	30min	1h	2h	3h	4h	5h	6 h	8 h	10h
12 V 1 OPzS 50 LA	NVZS120050WCOFA	44.0	39.0	35.0	28.2	21.0	14.2	11.7	9.8	8.5	7.5	6.3	5.6
12 V 2 OPzS 100 LA	NVZS120100WCOFA	87.5	78.0	69.5	55.0	41.0	28.8	21.4	17.8	15.6	14.3	11.8	9.7
12 V 3 OPzS 150 LA	NVZS120150WCOFA	130.0	112.0	102.5	81.0	59.8	42.0	31.5	27.1	23.0	20.7	17.1	14.2
6 V 4 OPzS 200 LA	NVZS060200WCOFA	162.0	145.0	135.0	110.0	78.7	55.5	42.2	35.0	30.8	28.1	23.3	18.7
6 V 5 OPzS 250 LA	NVZS060250WCOFA	193.0	175.0	155.0	126.0	93.4	67.0	52.5	44.5	38.2	35.1	29.3	23.7
6 V 6 OPzS 300 LA	NVZS060300WCOFA	216.0	195.0	177.0	147.0	113.5	79.0	62.0	54.0	46.0	40.5	33.7	28.0

$1.83 \mathrm{~V} / \mathrm{C}$ - Discharge in A at $20^{\circ} \mathrm{C}$

Type	Part number	5 min	$10 \min$	$15 \min$	30 min	1 h	2 h	3 h	4 h	5 h	6 h	8 h	10h
12V 1 OPzS 50 LA	NVZS120050WCOFA	48.0	43.0	39.0	31.0	22.8	15.3	12.2	10.2	8.8	7.8	6.5	5.8
12V 2 OPZS 100 LA	NVZS120100WCOFA	95.0	85.0	77.0	60.0	44.0	30.6	22.8	18.6	16.1	14.6	12.1	10.0
12V 3 OPzS 150 LA	NVZS120150WCOFA	140.0	122.0	115.0	87.0	64.6	44.4	33.4	28.3	24.1	21.6	17.9	14.6
6V 4 OPZS 200 LA	NVZS060200WCOFA	175.0	158.0	150.0	120.0	85.0	59.1	44.5	36.7	32.3	29.2	24.0	19.5
6V 5 OPZS 250 LA	NVZS060250WCOFA	207.0	190.0	171.0	135.0	102.0	71.4	55.0	46.5	40.3	36.3	30.2	24.5
6V 6 OPZS 300 LA	NVZS060300WCOFA	237.0	213.0	195.0	160.0	123.0	85.7	66.3	56.5	48.3	42.5	34.8	29.0

1.80 V/C - Discharge in A at $20^{\circ} \mathrm{C}$

Type	Part number	5 min	10 min	15 min	30 min	1 h	2 h	3 h	4 h	5 h	6 h	8 h	10 h
12V 1 OPZS 50 LA	NVZS120050WCOFA	57.0	49.0	44.0	34.0	25.2	17.1	13.5	11.0	9.5	8.2	6.9	5.9
12V 2 OPZS 100 LA	NVZS120100WCOFA	110.0	96.0	85.0	66.0	49.0	32.3	24.1	19.6	17.1	15.4	12.5	10.1
12V 3 OPZS 150 LA	NVZS120150WCOFA	160.0	135.0	120.0	95.0	70.4	47.1	36.0	29.8	25.7	22.7	18.6	15.0
6V 4 OPZS 200 LA	NVZS060200WCOFA	205.0	178.0	160.0	130.0	92.0	61.3	47.5	38.5	34.9	30.4	25.0	20.3
6V 5 OPZS 250 LA	NVZS060250WCOFA	240.0	212.0	190.0	150.0	110.0	74.5	59.2	49.0	42.8	37.8	31.2	25.5
6V 6 OPZS 300 LA	NVZS060300WCOFA	260.0	240.0	218.0	177.0	135.0	89.3	70.4	59.5	51.0	44.5	35.8	30.3

OPzS block

1.75 V/C - Discharge in A at $20^{\circ} \mathrm{C}$													
Type	Part number	5 min	10 min	15 min	30min	1 h	2h	3h	4h	5h	6h	8h	10h
12 V 1 OPzS 50 LA	NVZS120050WCOFA	65.0	56.0	48.0	36.0	26.5	18.4	14.0	11.6	9.8	8.6	7.2	6.2
12 V 2 OPzS 100 LA	NVZS120100WCOFA	125.0	109.0	95.0	71.0	51.3	34.0	25.9	20.8	18.2	16.2	13.0	10.2
12 V 3 OPzS 150 LA	NVZS120150WCOFA	185.0	155.0	136.0	102.0	73.4	50.0	37.5	31.2	27.0	24.0	19.4	15.3
6 V 4 OPzS 200 LA	NVZS060200WCOFA	235.0	206.0	185.0	140.0	97.9	66.0	50.0	40.5	35.8	31.2	25.7	20.4
6 V 5 OPzS 250 LA	NVZS060250WCOFA	285.0	250.0	220.0	165.0	120.0	81.0	62.0	51.0	44.0	39.1	32.3	26.1
6 V 6 OPzS 300 LA	NVZS060300WCOFA	340.0	295.0	260.0	200.0	143.0	98.3	74.5	62.0	52.5	45.8	36.8	30.6

1.70 V/C - Discharge in A at $20^{\circ} \mathrm{C}$

Type	Part number	5 min	10 min	15min	30min	1 h	2 h	3h	4h	5h	6 h	8h	10h
12 V 1 OPzS 50 LA	NVZS120050WCOFA	75.0	62.0	54.0	39.0	27.3	18.5	14.4	11.8	10.0	8.7	7.3	6.3
12 V 2 OPzS 100 LA	NVZS120100WCOFA	145.0	122.0	106.0	78.0	54.0	35.0	26.7	21.3	18.8	16.6	13.3	10.4
12 V 3 OPzS 150 LA	NVZS120150WCOFA	210.0	174.0	155.0	115.0	79.3	52.0	38.6	32.0	28.2	24.8	19.9	15.6
6 V 4 OPzS 200 LA	NVZS060200WCOFA	270.0	232.0	208.0	155.0	108.0	68.0	51.6	41.5	37.5	31.7	26.0	20.8
6 V 5 OPzS 250 LA	NVZS060250WCOFA	340.0	287.0	255.0	183.0	131.0	84.0	63.5	52.3	45.0	40.1	33.0	26.5
6 V 6 OPzS 300 LA	NVZS060300WCOFA	380.0	333.0	295.0	220.0	159.0	103.0	77.0	63.6	53.5	46.4	37.3	31.2

1.67 V/C - Discharge in A at $20^{\circ} \mathrm{C}$													
Type	Part number	5 min	10 min	15 min	30min	1h	2 h	3h	4h	5h	6h	8h	10h
12 V 1 OPzS 50 LA	NVZS120050WCOFA	80.0	66.0	56.0	40.0	27.7	18.7	14.5	11.9	10.0	8.8	7.3	6.3
12 V 2 OPzS 100 LA	NVZS120100WCOFA	156.0	130.0	111.0	81.0	55.0	35.3	26.8	21.6	18.9	16.8	13.4	10.4
12 V 3 OPzS 150 LA	NVZS120150WCOFA	229.0	186.0	163.0	118.0	82.0	52.6	39.0	32.2	28.5	25.2	20.1	15.7
6 V 4 OPzS 200 LA	NVZS060200WCOFA	293.0	247.0	219.0	160.0	111.0	68.5	52.5	41.8	36.1	32.0	26.1	21.0
6 V 5 OPzS 250 LA	NVZS060250WCOFA	362.0	307.0	268.0	193.0	133.0	84.5	63.9	52.6	45.6	40.5	33.3	26.6
6 V 6 OPzS 300 LA	NVZS060300WCOFA	417.0	355.0	315.0	231.0	163.0	105.0	78.0	64.1	54.0	46.6	37.5	31.3

1.65 V/C - Discharge in A at $20^{\circ} \mathrm{C}$													
Type	Part number	5 min	10 min	15 min	30min	1h	2 h	3h	4h	5h	6 h	8h	10h
12 V 1 OPzS 50 LA	NVZS120050WCOFA	83.0	68.0	58.0	41.0	27.9	18.8	14.5	11.9	10.0	8.8	7.3	6.3
12 V 2 OPzS 100 LA	NVZS120100WCOFA	162.0	135.0	115.0	83.0	55.5	35.5	26.9	21.7	19.0	16.9	13.5	10.4
12 V 3 OPzS 150 LA	NVZS120150WCOFA	240.0	193.0	168.0	120.0	83.0	53.0	39.2	32.4	28.6	25.5	20.2	15.7
6 V 4 OPzS 200 LA	NVZS060200WCOFA	307.0	258.0	226.0	163.0	113.0	69.0	52.9	42.0	36.2	32.2	26.2	21.0
6 V 5 OPzS 250 LA	NVZS060250WCOFA	380.0	320.0	278.0	189.0	135.0	85.0	64.1	52.8	46.0	40.8	33.4	26.6
6 V 6 OPzS 300 LA	NVZS060300WCOFA	435.0	369.0	326.0	237.0	165.0	106.0	78.5	64.4	54.2	46.8	37.6	31.3

OPzS cell

1.87 V/C - Discharge in A at $20^{\circ} \mathrm{C}$															
Type	Part number	3 min	10 min	15 min	20 min	30min	1 h	1h30	2 h	3 h	4 h	5 h	8h	10h	20h
2 OPzS 100 LA	NVZS020100WCOFA	82.4	81.1	76.0	71.5	65.2	51.2	42.7	36.3	28.6	23.4	20.0	14.1	11.7	6.3
3 OPzS 150 LA	NVZS020150WCOFA	106.0	105.0	98.5	91.6	83.4	66.2	55.3	47.5	37.3	30.6	26.2	18.6	15.4	8.4
4 OPzS 200 LA	NVZS020200WCOFA	135.0	134.0	125.0	118.0	107.0	84.3	70.4	60.4	47.5	39.0	33.3	23.7	19.7	10.6
5 OPzS 250 LA	NVZS020250WCOFA	163.0	161.0	151.0	142.0	130.0	103.0	86.3	74.5	58.2	47.9	41.1	29.2	24.3	13.2
6 OPzS 300 LA	NVZS020300WCOFA	189.0	186.0	175.0	166.0	152.0	121.0	102.0	88.4	68.7	56.5	48.7	34.7	29.0	15.7
5 OPzS 350 LA	NVZS020350WCOFA	190.0	187.0	180.0	174.0	160.0	135.0	115.0	99.8	79.8	66.5	57.8	41.7	34.8	19.3
6 OPzS 420 LA	NVZS020420WCOFA	216.0	214.0	207.0	201.0	186.0	157.0	135.0	118.0	95.6	79.7	69.2	50.0	41.7	23.1
7 OPzS 490 LA	NVZS020490WCOFA	. 0	245.0	236.0	229.0	213.0	179.0	156.0	136.0	111.0	92.5	80.6	58.2	48.5	26.9
6 OPzS 600 LA	NVZS020600WCOFA	279.0	277.0	267.0	257.0	239.0	207.0	181.0	163.0	131.0	111.0	98.5	72.9	62.3	34.5
7 OPzS 700 LA	NVZS020700WCOFA	307.0	305.0	295.0	284.0	264.0	228.0	200.0	179.0	144.0	123.0	109.0	80.4	68.7	38.0
8 OPzS 800 LA	NVZS020800WCOFA	403.0	396.0	378.0	365.0	337.0	290.0	252.0	222.0	178.0	152.0	134.0	98.1	83.4	46.1
9 OPzS 900 LA	NVZS020900WCOFA	430.0	427.0	407.0	393.0	363.0	312.0	271.0	239.0	192.0	164.0	144.0	106.0	89.8	49.7
10 OPzS 1000 LA	NVZS021000WCOFA	484.0	480.0	461.0	444.0	412.0	355.0	309.0	276.0	221.0	188.0	167.0	123.0	104.0	57.8
12 OPzS 1200 LA	NVZS021200WCOFA	2.0	558.0	538.0	518.0	482.0	416.0	365.0	328.0	264.0	225.0	198.0	147.0	125.0	69.5
12 OPzS 1500 LA	NVZS021500WCOFA	522.0	521.0	511.0	498.0	479.0	419.0	385.0	352.0	297.0	257.0	230.0	173.0	148.0	79.8
14 OPzS 1750 LA	NVZS021750WCOFA	553.0	552.0	541.0	532.0	508.0	444.0	408.0	372.0	314.0	272.0	245.0	183.0	157.0	84.5
16 OPzS 2000 LA	NVZS022000WCOFA	754.0	752.0	731.0	712.0	676.0	578.0	525.0	473.0	392.0	339.0	305.0	229.0	196.0	105.0
18 OPzS 2250 LA	NVZS022250WCOFA	791.0	789.0	769.0	748.0	712.0	615.0	561.0	507.0	427.0	370.0	333.0	249.0	213.0	115.0
20 OPzS 2500 LA	NVZS022500WCOFA	937.0	936.0	910.0	885.0	779.0	720.0	654.0	589.0	488.0	423.0	380.0	284.0	244.0	132.0
22 OPzS 2750 LA	NVZS022750WCOFA	1005.0	1005.0	976.0	949.0	903.0	771.0	700.0	631.0	523.0	453.0	407.0	305.0	262.0	141.0
24 OPzS 3000 LA	NVZS023000WCOFA	1080.0	1075.0	1050.0	1020.0	972.0	841.0	766.0	693.0	584.0	506.0	455.0	340.0	292.0	157.0

1.85 V/C - Discharge in A at $20^{\circ} \mathrm{C}$															
Type	Part number	3 min	10min	15 min	20 min	30 min	1 h	1h30	2 h	3h	4h	5h	8h	10h	20h
2 OPzS 100 LA	NVZS020100WCOFA	93.4	91.2	84.5	79.7	71.4	54.8	45.5	38.5	30.2	24.6	21.0	14.6	12.3	6.6
3 OPzS 150 LA	NVZS020150WCOFA	121.0	118.0	110.0	101.0	90.8	71.0	58.9	50.3	39.4	32.2	27.4	19.3	16.2	8.7
4 OPzS 200 LA	NVZSO20200WCOFA	153.0	150.0	139.0	131.0	118.0	90.3	75.0	64.1	50.2	41.0	34.9	24.6	20.6	11.0
5 OPzS 250 LA	NVZS020250WCOFA	185.0	181.0	168.0	159.0	143.0	110.0	92.0	79.0	61.5	50.3	42.9	30.3	25.5	13.7
6 OPzS 300 LA	NVZS020300WCOFA	215.0	210.0	195.0	185.0	167.0	130.0	109.0	93.7	72.6	59.4	50.9	35.9	30.	16.3
5 OPzS 350 LA	NVZS020350WCOFA	215.0	211.0	202.0	194.0	178.0	148.0	124.0	107.0	84.4	70.2	60.8	43.7	36.5	20.0
6 OPzS 420 LA	NVZS020420WCOFA	244.0	240.0	232.0	224.0	207.0	172.0	146.0	127.0	101.0	84.0	72.8	52.3	43.7	23.9
7 OPzS 490 LA	NVZS020490WCOFA	279.0	274.0	265.0	256.0	237.0	196.0	168.0	147.0	118.0	98.1	84.8	61.0	50.9	27.8
6 OPzS 600 LA	NVZS020600WCOFA	313.0	309.0	296.0	286.0	265.0	228.0	198.0	177.0	140.0	118.0	103.0	76.2	65.3	35.7
7 OPzS 700 LA	NVZS020700WCOFA	345.0	341.0	327.0	315.0	293.0	251.0	218.0	195.0	155.0	130.0	114.0	84.0	72.0	39.4
8 OPzS 800 LA	NVZS020800WCOFA	457.0	446.0	422.0	405.0	373.0	318.0	275.0	241.0	191.0	161.0	141.0	103.0	87.4	47.8
9 OPzS 900 LA	NVZS020900WCOFA	486.0	480.0	455.0	436.0	402.0	342.0	296.0	260.0	206.0	173.0	152.0	111.0	94.	51.5
10 OPzS 1000 LA	NVZS021000WCOFA	546.0	539.0	513.0	493.0	456.0	390.0	338.0	299.0	237.0	199.0	175.0	128.0	109.0	59.9
12 OPzS 1200 LA	NVZS021200WCOFA	631.0	623.0	597.0	575.0	534.0	459.0	399.0	356.0	282.0	237.0	208.0	153.0	132.0	71.9
12 OPzS 1500 LA	NVZS021500WCOFA	599.0	596.0	583.0	568.0	544.0	469.0	428.0	388.0	323.0	277.0	246.0	184.0	156.0	85.0
14 OPzS 1750 LA	NVZS021750WCOFA	635.0	632.0	617.0	602.0	576.0	497.0	454.0	410.0	342.0	293.0	261.0	194.0	166.0	90.0
16 OPzS 2000 LA	NVZS022000WCOFA	865.0	861.0	835.0	811.0	768.0	648.0	585.0	522.0	427.0	366.0	326.0	243.0	207.0	112.0
18 OPzS 2250 LA	NVZS022250WCOFA	908.0	903.0	878.0	853.0	808.0	688.0	623.0	559.0	465.0	399.0	355.0	265.0	225.0	122.0
20 OPzS 2500 LA	NVZS022500WCOFA	1075.0	1070.0	1040.0	1010.0	956.0	806.0	728.0	649.0	532.0	456.0	406.0	302.0	258.0	140.0
22 OPzS 2750 LA	NVZS022750WCOFA	1155.0	1150.0	1115.0	1080.0	1025.0	864.0	779.0	695.0	570.0	489.0	435.0	324.0	276.0	150.0
24 OPzS 3000 LA	NVZS023000WCOFA	1240.0	1235.0	1200.0	1165.0	1100.0	942.0	852.0	764.0	636.0	546.0	486.0	362.0	308.0	167.0

Constant current discharge

OPzS cell

1.83 V/C - Discharge in A at $20^{\circ} \mathrm{C}$															
Type	Part number	3 min	10 min	15 min	20 min	30 min	1h	1h30	2 h	3 h	4h	5 h	8h	10h	20h
2 OPzS 100 LA	NVZS020100WCOFA	104	101	93.0	86.9	76.8	57.5	47.4	39.9	31.2	25.4	21.6	14.9	12.5	6.7
3 OPzS 150 LA	NVZS020150WCOFA	134	130	120.0	110.0	97.4	74.3	61.3	52.2	40.8	33.2	28.2	19.6	16.4	8.9
4 OPzS 200 LA	NVZS020200WCOFA	171	166	153.0	143.0	126.0	94.7	78.0	66.4	52.0	42.4	36.0	25.0	20.9	11.3
5 OPzS 250 LA	NVZS020250WCOFA	207	201	185.0	173.0	154.0	116.0	95.7	81.9	63.7	52.0	44.3	30.8	25.9	14.0
6 OPzS 300 LA	NVZS020300WCOFA	241	231	215.0	201.0	180.0	136.0	113.0	97.3	75.2	61.4	52.5	36.5	30.9	6.7
5 OPzS 350 LA	NVZS020350WCOFA	238	232	221.0	213.0	194.0	158.0	131.0	113.0	87.9	72.6	62.5	44.5	37.1	20.3
6 OPzS 420 LA	NVZS020420WCOFA	272	265	255.0	245.0	225.0	183.0	154.0	133.0	105.0	86.8	74.8	53.2	44.4	24.3
7 OPzS 490 LA	NVZS020490WCOFA	310	303	291.0	280.0	257.0	209.0	178.0	154.0	123.0	102.0	87.1	62.0	51.7	28.4
6 OPzS 600 LA	NVZS020600WCOFA	347	341	325.0	312.0	289.0	245.0	211.0	187.0	147.0	123.0	107.0	77.8	66.4	36.4
7 OPzS 700 LA	NVZS020700WCOFA	382	376	359.0	344.0	319.0	270.0	233.0	206.0	162.0	135.0	118.0	85.8	73.2	40.1
8 OPzS 800 LA	NVZS020800WCOFA	505	493	464.0	443.0	407.0	342.0	292.0	255.0	199.0	166.0	145.0	105.0	88.8	48.7
9 OPzS 900 LA	NVZS020900WCOFA	540	531	500.0	477.0	438.0	368.0	315.0	275.0	214.0	179.0	157.0	113.0	95.6	52.4
10 OPzS 1000 LA	NVZS021000WCOFA	605	595	563.0	539.0	497.0	420.0	360.0	317.0	248.0	207.0	180.0	131.0	111.0	61.0
12 OPzS 1200 LA	NVZS021200WCOFA	698	686	655.0	629.0	583.0	494.0	426.0	376.0	295.0	247.0	215.0	157.0	134.0	73.3
12 OPzS 1500 LA	NVZS021500WCOFA	673	668	652.0	633.0	602.0	513.0	465.0	418.0	343.0	292.0	258.0	191.0	162.0	88.3
14 OPzS 1750 LA	NVZS021750WCOF	713	708	69	671.0	638.0	543.0	493.0	442.0	364.0	310.0	274.0	201.0	172.0	93.4
16 OPzS 2000 LA	NVZS022000WCOFA	973	966	934.0	904.0	850.0	708.0	634.0	562.0	454.0	387.0	342.0	252.0	214.0	116.0
18 OPzS 2250 LA	NVZS022250WCOFA	1015	1010	982.0	951.0	894.0	752.0	677.0	602.0	495.0	421.0	373.0	275.0	233.0	127.0
20 OPzS 2500 LA	NVZS022500WCOFA	1205	1200	1165.0	1125.0	1060.0	881.0	790.0	700.0	566.0	482.0	426.0	313.0	267.0	145.0
22 OPzS 2750 LA	NVZS022750WCOFA	1295	1285	1245.0	1205.0	1135.0	944.0	846.0	750.0	606.0	516.0	457.0	336.0	286.0	156.0
24 OPzS 3000 LA	NVZS023000WCOFA	1390	1380	1345.0	1300.0	1220.0	1030.0	924.0	825.0	675.0	575.0	510.0	375.0	319.0	174.0

$1.80 \mathrm{~V} / \mathrm{C}$ - Discharge in A at $\mathbf{2 0}^{\circ} \mathrm{C}$

Type	Part number	3 min	10 min	15 min	20 min	30min	1h	1h30	2 h	3 h	4h	5 h	8 h	10h	20h
2 OPzS 100 LA	NVZS020100WCOFA	122	116	106	97.7	84.8	61.5	50.1	42.0	32.8	26.6	22.6	15.3	12.8	7.0
3 OPzS 150 LA	NVZ	15	148	135	124.0	107.0	79.2	64.8	54.9	. 9	34.8	29.5	20.1	16.8	9.2
4 OPzS 200 LA	NVZS020200WCOFA	199	190	174	161.0	140.0	101.0	82.5	69.9	54.6	44.4	37.6	25.6	21.4	1.8
5 OPzS 250 LA	NVZSO20250WCOF	241	230	211	195.0	170.0	124.0	101.0	86.3	66.9	54.5	46.3	31.6	26.5	4.6
6 OPzS 300 LA	NVZS020300WCOFA	281	268	245	227.0	199.0	6.0	120.0	103.0	79.0	64.3	54.9	37.	31.6	7.4
5 OPzS 350 LA	NVZS020350WCOFA	273	264	251	240.0	216.0	172.0	141.0	0.0	93.1	76.2	5.0	45.6	38.0	20.9
6 OPzS 420 LA	NVZS020420WCOFA	314	303	289	277.0	252.0	200.0	166.0	142.0	111.0	90.9	. 8	54.6	45.5	25.
7 OPzS 490 LA	NVZS020490	358	346	330	316.0	28	229.0	192.0	164.0	130.0	106.4	90.6	63.6	53.0	29.2
6 OPzS 600 LA	NVZS020600	39	388	368	352.0	325	27	232.0	202.0	6.0	29.0	112.0	80.2	68.0	37.4
7 OPzS 700 LA	NVZS020700	439	428	406	. 0	.	9.0	256.0	3.0	3.0	144.0	123.0	88.5	75.0	4.3
8 OPZS 800 LA	NVZS020800WCOFA	572	564	528	501.0	457.0	378.0	319.0	277.0	211.0	175.0	152.0	108.0	91.0	50.
9 OPzS 900	NVZS020900	62	608	568	539.0	492.0	407.0	343.0	8.0	227.0	188.0	164.0	117.0	98.0	53.9
10 OPzS 1000 LA	NVZS021000	69	678	639	9.0	559.0	464.0	394.0	343.0	263.0	218.0	189.0	135.0	114.0	62.7
12 OPzS 1200 LA	NVZS021200	800	781	741	710.0	655	7.0		407.0	31	. 0	225.0	162.0	137.0	75.
12 OPzS 1500 LA	NVZS021500WCOFA	785	777	756	731.0	690.0	578.0	520.0	462.0	374.0	316.0	277.0	201.0	170.0	93.2
14 OPzS 1750 LA	NVZS021750WCOFA	83	823	801	774.0	731.0	612.0	1.0	490.0	396.0	334.0	293.0	212.0	180.0	98.6
16 OPzS 2000 LA	NVZS022000WCOFA	1135	1125	1080	1040.0	974.0	798.0	709.0	622.0	495.0	418.0	367.0	265.0	225.0	123.0
18 OPzS 2250 LA	NVZS022250	11	1175	11	1095.0	102	848.0	757.0	666.0	539.0	455.0	399.0	289.0	. 0	134.0
20 OPzS 2500 LA	NVZS022500WCOFA	139	1375	1345	1300.0	1210.0	993.0	884.0	775.0	616.0	520.0	456.0	330.0	280.0	153.0
22 OPzS 2750 LA	NVZS022750WCOFA	1510	1495	1445	1390.0	1300.0	1065.0	946.0	830.0	660.0	557.0	489.0	354.0	300.0	164.0
24 OPzS 3000 LA	NVZS023000WCOFA	1620	1605	1555	1500.0	1400.0	1160.0	1035.0	911.0	737.0	622.0	546.0	395.0	335.0	184.0

OPzS cell

1.75 V/C - Discharge in A at $20^{\circ} \mathrm{C}$															
Type	Part number	3 min	10 min	15min	20 min	30 min	1 h	1h30	2 h	3h	4h	5 h	8 h	10h	20h
2 OPzS 100 LA	NVZS020100WCOFA	147	137	125	113	96.1	66.4	52.9	44.2	34.3	27.7	23.5	15.9	13.1	7.2
3 OPzS 150 LA	NVZS020150WCOFA	188	175	158	144	122.0	85.3	68.5	57.8	44.9	36.4	30.7	21.0	17.3	9.5
4 OPzS 200 LA	NVZS020200WCOFA	243	226	205	186	158.0	109.0	87.2	73.5	57.1	46.3	39.1	26.7	22.1	12.1
5 OPzS 250 LA	NVZS020250WCOFA	294	274	249	225	193.0	134.0	107.0	90.8	70.0	56.8	48.1	32.9	27.3	15.0
6 OPzS 300 LA	NVZS020300WCOFA	343	319	290	263	226.0	158.0	127.0	108.0	82.6	67.0	57.1	39.0	32.6	17.8
5 OPzS 350 LA	NVZS020350WCOFA	333	316	296	281	247.0	190.0	153.0	129.0	97.3	79.7	68.0	47.1	39.1	21.5
6 OPzS 420 LA	NVZSO20420WCOFA	383	364	341	323	288.0	221.0	180.0	152.0	116.0	95.0	81.4	56.4	46.9	25.7
7 OPzS 490 LA	NVZS020490WCOFA	438	416	390	369	328.0	252.0	207.0	176.0	136.0	111.0	94.9	65.7	54.6	29.9
6 OPzS 600 LA	NVZS020600WCOFA	480	462	437	416	381.0	306.0	258.0	220.0	167.0	136.0	116.0	83.0	70.0	38.4
7 OPzS 700 LA	NVZS020700WCOFA	530	510	482	459	420.0	338.0	285.0	242.0	184.0	150.0	128.0	91.5	77.3	42.4
8 OPzS 800 LA	NVZS020800WCOFA	703	677	630	592	534.0	430.0	353.0	303.0	226.0	184.0	157.0	112.0	92.8	51.4
9 OPzS 900 LA	NVZS020900WCOFA	758	730	678	637	575.0	463.0	380.0	326.0	243.0	198.0	170.0	121.0	100.0	55.4
10 OPzS 1000 LA	NVZS021000WCOFA	843	812	761	719	654.0	526.0	438.0	374.0	281.0	229.0	196.0	140.0	117.0	64.4
12 OPzS 1200 LA	NVZS021200WCOFA	968	932	881	838	767.0	617.0	521.0	443.0	336.0	273.0	233.0	167.0	141.0	77.4
12 OPzS 1500 LA	NVZS021500WCOFA	966	952	923	884	824.0	676.0	598.0	524.0	413.0	346.0	301.0	212.0	178.0	97.4
14 OPzS 1750 LA	NVZS021750WCOF	1025	1010	977	936	873.0	716.0	634.0	554.0	437.0	366.0	319.0	225.0	188.0	103.0
16 OPzS 2000 LA	NVZS022000WCOFA	1395	1375	1320	1260	1165.0	933.0	817.0	705.0	547.0	458.0	398.0	281.0	235.0	129.0
18 OPzS 2250 LA	NVZS022250WCOFA	1460	1440	1390	1325	1225.0	993.0	871.0	755.0	595.0	498.0	434.0	306.0	256.0	141.0
20 OPzS 2500 LA	NVZS022500WCOFA	1735	1710	1645	1565	1450.0	1165.0	1015.0	877.0	680.0	569.0	496.0	350.0	293.0	161.0
22 OPzS 2750 LA	NVZS022750WCOFA	1855	1830	1765	1680	1550.0	1245.0	1090.0	940.0	729.0	610.0	531.0	375.0	313.0	172.0
24 OPzS 3000 LA	NVZS023000WCOFA	2000	1970	1900	1810	1675.0	1360.0	1190.0	1030.0	814.0	681.0	593.0	419.0	350.0	192.0

1.70 V/C - Discharge in A at $20^{\circ} \mathrm{C}$

Type	Part number	3 min	10min	15min	20 min	30min	1h	1h30	2 h	3 h	4h	5 h	8 h	10h	20h
2 OPzS 100 LA	NVZS020100WCOFA	173	157	139	125	105	69.7	54.8	45.2	35.2	28.3	23.9	16.0	13.3	7.3
3 OPzS 150 LA	NVZSO20	220	200	177	160	134	89.4	71.0	59.1	46.0	37.0	31.2	21.1	7.5	. 6
4 OPzS 200 LA	NVZS020200WCOF	284	258	229	206	172	115.0	90.3	75.2	58.6	47.3	39.7	26.9	22.3	2.2
5 OPzS 250 LA	NVZSO20250	34	313	278	250	210	141.0	111.0	93.0	71.8	57.9	48.9	33.1	27.6	5.1
6 OPzS 300 LA	NVZS020300WCOF	403	366	325	292	247	166.0	132.0	111.0	84.8	68.4	58.0	39.3	32.9	18.0
5 OPzS 350 LA	NVZSO20350WCOF	394	368	339	316	274	2.0	1.0	. 0	100.0	81.4	69.5	47.1	39.9	22.0
6 OPzS 420 LA	NVZSO20420WCOF	453	423	390	364	319	235.0	189.0	158.0	120.0	97.7	83.3	57.8	47.8	26.4
7 OPzS 490 LA	NVZS020490WCOF	517	483	46	416	364	9 0	8.0	3.0	140.0	114.0	97.0	67.3	55.7	30.7
6 OPzS 600 LA	NVZSO20600WCO	56	535	50	79	433	337.0		233.0	173.0	139.0	118.0	84.3	70.7	9.1
7 OPzS 700 LA	NVZS020700	619	590	559	528	78	371.0	. 0	257.0	191.0	154.0	130.0	93.0	78.0	43.1
8 OPzS 800 LA	NVZS020800WC	824	785	728	678	606	71.0	379.0	322.0	237.0	190.0	160.0	114.0	94.6	52.3
9 OPzS 900 LA	NVZS020900WC	888	846	84	730	653	8.0	40	347.0	255.0	204.0	172.0	123.0	102.0	56.
10 OPzS 1000 LA	NVZS021000W	988	941	881	826	743	577.0	471.0	39	29	237.0	199.0	142.0	119.0	65.6
12 OPzS 1200 LA	NVZS021200WC	11	108	1020	964	873	678.0	562.0	469.0	349.0	1.0	237.0	170.0	142.0	78.8
12 OPzS 1500 LA	NVZS021500WCOF	1145	1125	1085	1030	950	768.0	665.0	573.0	442.0	367.0	318.0	219.0	182.0	100.0
14 OPzS 1750 LA	NVZS021750WCOF	1215	1190	50	90	1005	814.0	704.0	607.0	468.0	389.0	337.0	232.0	193.0	106.0
16 OPzS 2000 LA	NVZS022000WCOFA	1655	1625	1555	1470	1345	1060.0	907.0	771.0	585.0	486.0	421.0	290.0	241.0	132.0
18 OPzS 2250 LA	NVZS022250WCOF	1735	1700	1635	1545	1410	1125.0	968.0	826.0	637.0	529.0	458.0	316.0	262.0	144.0
20 OPzS 2500 LA	NVZS022500WCOF	2060	2020	1930	1830	1670	1320.0	1130.0	960.0	728.0	605.0	524.0	361.0	300.0	165.0
22 OPzS 2750 LA	NVZS022750WCO	2205	2165	2070	1960	1785	1415.0	1210.0	1025.0	780.0	648.0	561.0	387.0	321.0	176.0
24 OPzS 3000 LA	NVZS023000WCOFA	2375	2330	2230	2115	1930	1540.0	1325.0	1130.0	871.0	723.0	626.0	432.0	358.0	197.0

Constant current discharge

OPzS cell

1.65 V/C - Discharge in A at $20^{\circ} \mathrm{C}$															
Type	Part number	3 min	10 min	15 min	20 min	30min	1 h	1h30	2 h	3 h	4h	5 h	8h	10h	20h
2 OPzS 100 LA	NVZS020100WCOFA	196	174	151	135	111	71.8	55.8	46.4	35.7	28.6	24.1	16.0	13.3	7.3
3 OPzS 150 LA	NVZS020150WCOFA	249	221	194	172	142	91.7	72.3	60.1	46.7	37.5	31.5	21.1	17.5	9.6
4 OPzS 200 LA	NVZS020200WCOFA	322	286	249	222	182	118.0	92.0	76.4	59.4	47.7	40.1	26.9	22.3	12.2
5 OPzS 250 LA	NVZS020250WCOFA	392	348	303	270	222	145.0	113.0	94.6	72.8	58.6	49.4	33.1	27.6	5.1
6 OPzS 300 LA	NVZS020300WCOFA	458	407	355	315	261	171.0	134.0	113.0	86.0	69.3	58.6	39.3	32.9	18.0
5 OPzS 350 LA	NVZS020350WCOFA	454	417	379	349	297	211.0	167.0	137.0	103.0	82.9	69.9	47.1	39.9	22.0
6 OPzS 420 LA	NVZSO20420WCOFA	522	480	437	402	346	246.0	196.0	162.0	123.0	99.1	83.7	57.8	47.8	26.4
7 OPzS 490 LA	NVZS020490WCOFA	596	548	499	459	395	280.0	226.0	187.0	143.0	115.0	97.5	67.3	55.7	30.7
6 OPzS 600 LA	NVZS020600WCOFA	643	605	576	541	482	364.0	294.0	243.0	177.0	141.0	119.0	86.4	71.4	39.4
7 OPzS 700 LA	NVZS020700WCOFA	710	668	635	596	532	401.0	324.0	269.0	196.0	156.0	131.0	95.3	78.8	43.5
8 OPzS 800 LA	NVZS020800WCOFA	945	890	824	760	673	502.0	399.0	335.0	244.0	194.0	162.0	116.0	95.6	52.8
9 OPzS 900 LA	NVZSO20900WCOF	1015	958	887	818	725	541.0	430.0	361.0	263.0	209.0	174.0	124.0	103.0	56.8
10 OPzS 1000 LA	NVZS021000WCOFA	1130	1065	999	929	826	620.0	496.0	414.0	302.0	241.0	201.0	145.0	120.0	66.1
12 OPzS 1200 LA	NVZS021200WCOF	1295	1220	1160	1090	971	733.0	592.0	490.0	358.0	286.0	240.0	174.0	144.0	79.5
12 OPzS 1500 LA	NVZS021500WCOFA	1330	1300	1240	1175	1070	853.0	721.0	612.0	462.0	382.0	330.0	223.0	184.0	101.0
14 OPzS 1750 LA	NVZS021750WCOFA	1410	1375	1315	1245	1135	904.0	763.0	648.0	490.0	405.0	349.0	236.0	194.0	107.0
16 OPzS 2000 LA	NVZS022000WCOFA	1920	1875	1775	1675	1510	1180.0	984.0	824.0	612.0	506.0	436.0	295.0	243.0	133.0
18 OPzS 2250 LA	NVZS022250WCOFA	2015	1965	1870	1765	1590	1250.0	1050.0	882.0	666.0	550.0	475.0	321.0	265.0	145.0
20 OPzS 2500 LA	NVZS022500WCOFA	2390	2335	2215	2090	1885	1465.0	1220.0	1025.0	762.0	630.0	543.0	367.0	302.0	166.0
22 OPzS 2750 LA	NVZS022750WCOFA	2555	2495	2370	2235	2015	1570.0	1310.0	1100.0	815.0	674.0	582.0	393.0	324.0	178.0
24 OPzS 3000 LA	NVZS023000WCOFA	2755	2690	2555	2415	2175	1710.0	1435.0	1205.0	911.0	753.0	650.0	439.0	362.0	199.0

$1.60 \mathrm{~V} / \mathrm{C}$ - Discharge in A at $\mathbf{2 0}^{\circ} \mathrm{C}$

Type	Part number	3 min	10 min	15 min	20 min	30min	1h	1h30	2 h	3 h	4 h	5 h	8h	10h	20h
2 OPzS 100 LA	NVZS020100WCOFA	216	188	162	143	116	73.3	56.4	46.5	36.0	29.4	24.0	16.0	13.3	7.3
3 OPzS 150 LA	NVZS020150WCOFA	275	239	207	182	147	93.4	72.9	60.7	47.0	37.3	31.4	21.1	17.5	9.6
4 OPzS 200 LA	NVZS020200WCOFA	355	309	267	235	190	121.0	92.8	77.3	59.9	47.6	39.9	26.9	22.3	12.2
5 OPzS 250 LA	NVZSO20250WCOFA	434	377	325	286	232	. 0	114.0	95.7	73.4	58.3	49.2	33.1	27.6	15.1
6 OPzS 300 LA	NVZS020300WCOFA	508	442	381	335	272	176.0	136.0	114.0	86.6	68.8	58.3	39.3	32.9	8.0
5 OPzS 350 LA	NVZS020350	51	466	418	377	319	217.0	171.0	. 0	10	83.4	69.2	47.1	39.9	22.0
6 OPzS 420 LA	NVZS020420WCOFA	592	536	481	435	370	253.0	200.0	165.0	125.0	99.3	82.8	57.8	7.8	26.4
7 OPzS 490 LA	NVZS020490WCO	676	612	549	496	423	288.0	231.0	190.0	146.0	116.0	96.5	67.3	55.7	30.7
6 OPzS 600 LA	NVZS020600WC0	723	673	645	602	528	388.0	305.0	252.0	179.0	142.0	119.0	86.	71.	39.4
7 OPzS 700 LA	NVZS020700WCO	799	73	12	665	583	42	33	278.0	197.0	156.0	131.0	95.3	78.8	43.5
8 OPzS 800 LA	NVZS020800WCOF	1065	992	917	837	737	524.0	416.0	342.0	248.0	195.0	162.0	116.0	95.6	52.8
9 OPzS 900 LA	NVZS020900WCOF	1150	1070	988	902	794		448.0	368.0	267.0	211.0	174.0	124.0	103.0	56.
10 OPzS 1000 LA	NVZS021000WCOFA	1270	1185	1115	1030	905	653.0	516.0	426.0	305.0	242.0	201.0	145.0	120.0	66.
12 OPzS 1200 LA	NVZS021200WCO	1455	1355	1300	1215	1065	78	. 0	508.0	360.0	286	240.0	174.0	144.0	79.
12 OPzS 1500 LA	NVZS021500WCOF	1515	1470	1395	1320	1190	933.0	767.0	642.0	476.0	391.0	337.0	224.0	184.0	101.0
14 OPzS	NVZS021	16	1560	1475	1395	60	988.0	812.0	8.0	504.0	414.0	35	238.	. 0	107.0
16 OPzS 2000 LA	NVZS022000WCOFA	2185	2125	1995	1880	1680	1290.0	1045.0	864.0	630.0	518.0	445.0	297.0	243.0	133.0
18 OPzS 2250 LA	NVZS022250WCOF	2290	2225	2100	1975	1765	1370.0	1115.0	926.0	686.0	564.0	485.0	323.0	265.0	145.0
20 OPzS 2500 LA	NVZS022500WCOFA	2725	2645	2485	2340	2090	1600.0	1305.0	1080.0	784.0	645.0	554.0	370.0	302.0	166.0
22 OPzS 2750 LA	NVZS022750WCOFA	2920	2835	2660	2510	2240	1715.0	1395.0	1155.0	840.0	690.0	594.0	396.0	324.0	178.0
24 OPzS 3000 LA	NVZS023000WCOFA	3135	3045	2870	2705	2415	1875.0	1525.0	1265.0	938.0	771.0	663.0	442.0	362.0	199.0

Exide Technologies Industrial Energy The Industry Leader.

Exide Technologies Industrial Energy is a global leader in stored electrical energy solutions for all major critical reserve power applications and needs. Standby power applications include communication/data networks, UPS systems for computers and control systems, electrical power generation and distribution systems, as well as a wide range of other industrial standby power applications. With a strong manufacturing base in both North America and Europe and a truly global reach (operations in more than 80 countries) in sales and service, Exide Technologies Industrial Energy is best positioned to satisfy your back up power needs locally as well as all over the world.

Based on over 100 years of technological innovation the Industrial Energy Division leads the industry with the most recognized global standby power brands such as Absolyte, Sonnenschein, Marathon, Sprinter, and Flooded Classic. They have come to symbolize quality, reliability, performance and excellence in all the markets served.

Exide Technologies takes pride in its commitment to a better environment. Its Total Battery Management program, an integrated approach to manufacturing, distributing and recycling of lead acid batteries, has been developed to ensure a safe and responsible life cycle for all of its products.

EXIDE Technologies
Industrial Energy
Im Thiergarten
63654 Büdingen
Germany
Tel.: +49 (0) $6042 / 8170$
Fax: +49 (0)6042/81233

EXIDE Technologies
Industrial Energy
3950 Sussex Avenue
Aurora, IL, U.S.A.

Tel.: +1 630.862.2200
Fax: +1 630.862.2312

Installation instruction for stationary lead acid batteries (Batteries / Stands / Cabinets)

- Observe these Instructions and keep them located near the battery for future reference. Work on the battery should only be carried out by qualified
- personnel.
- Do not smoke.
- Do not use any naked flame or other sources of ignition.
- Risk of explosion and fire.
- While working on batteries wear protective eye-glasses and clothing.
- Observe the accident prevention rules as well as EN 50 272-2, DIN 50110-1.
- An acid splash on the skin or in the eyes must be flushed with plenty of clean water immediately. Then seek medical assistance.
- Spillages on clothing should be rinsed out with water.
- Explosion and fire hazard, avoid short circuits.
- Electrolyte is very corrosive. In normal working conditions the contact with the electolyte is impossible. If the cell or monobloc container is damaged do not touch the exposed electrolyte because it is corrosive.
- Cells and monoblocs are heavy! Always use suitable handling equipment for transportation.
- Handle with care because cells and monoblocs are sensitive to mechanical shock.
- Dangerous electric voltage!

Caution! Metal parts of the battery are always alive, therefore do not place items or tools on the battery.

1. Installation preconditions and preparations
 1.1

Prior to commencing installation, ensure that the battery room is clean and dry and that it has a lockable door. The battery room must meet the requirements in accordance with EN 50 272-2 and be marked as such. Pay attention to the following aspects:

- Load bearing capacity and nature of the floor (transport paths and battery room)
- Electrolytic resistance of the area where the battery is to be installed
- Ventilation

To ensure trouble free installation, coordination should be made with other personnel working in the same area.

1.2

Check delivery for complete and undamaged components. If necessary, clean all parts prior to installation.

1.3

Follow instructions in the documentation supplied (e.g. installation drawings for battery, stand, cabinet).

1.4

Prior to removing old batteries always ensure that all of the leads have been disconnected (load-break switches, fuses, insulations). This must be carried out only by personnel authorised to perform circuit operations.

WARNING: Do not carry out any unauthorised circuit operation!

1.5

Carry out open circuit voltage measurements on the individual cells or monobloc batteries. At the same time, ensure that they are connected in the correct polarity. As for unfilled and charged batteries, these measurements can only be taken after commissioning. The open-circuit voltages for fully charged cells at an electrolyte temperature of $20^{\circ} \mathrm{C}$ are as follows:

OPzS-cells	DIN 40736	$2.08 \pm 0.01[\mathrm{Vpc}]$
OPzS-monobloc batt.	DIN 40737	$2.08 \pm 0.01[\mathrm{Vpc}]$
OCSM-cells		$2.10 \pm 0.01[\mathrm{Vpc}]$
GroE-cells	DIN 40738	$2.06 \pm 0.01[\mathrm{Vpc}]$
OGi-monobloc batteries	$2.10 \pm 0.01[\mathrm{Vpc}]$	
OGi-cells	DIN 40734	$2.10 \pm 0.01[\mathrm{Vpc}]$
OGiV-monobloc batt.	DIN 40741, part 1	$2.10 \pm 0.01[\mathrm{Vpc}]$
Other OGiV- batteries monobloc	Depending on construction	$2.08-2.14^{\star}[\mathrm{Vpc}]$
OPzV-cells	DIN 40742 (draft)	$2.08-2.14^{\star}[\mathrm{Vpc}]$
OPzV-monobloc batt.	DIN 40744 (draft)	$2.08-2.14^{\star}[\mathrm{Vpc}]$

* according to manufacturer's information

The open-circuit voltage of the individual cells must not vary from each other by more than 0.02 V . With regard to monobloc batteries, the maximum deviations of the open-circuit voltage are as follows:

4 V	monobloc batteries	$0.03 \mathrm{~V} / \mathrm{bloc}$
6 V	monobloc batteries	$0.04 \mathrm{~V} / \mathrm{bloc}$
12 V	monobloc batteries	$0.05 \mathrm{~V} / \mathrm{bloc}$

Higher temperatures cause the open-circuit voltage to be lower, whereas lower temperatures cause it to be higher. At a deviation of 15 K from the nominal temperature, the open circuit-voltage changes by 0.01 Vpc . If the deviation is any higher, contact the supplier.

2. Stands

2.1

Locate the stands/racks within the battery room in accordance with the installation plan. If an installation plan does not exist, observe the following minimum distances:

- From the wall: 100 mm all around, with regard to cells or monoblocs, or 50 mm , concerning of the stands.
- At a nominal voltage or partial voltage >120 V: 1.5 metres between non-insulated leads or connectors and grounded parts (e.g. water pipes) and/or between the battery terminals. During the installation of the batteries, ensure that EN 50 272-2 part 2 is observed (e.g. by covering electrically conductive parts with insulating mats).
- Width of aisles: $1.5 \times$ cell width (built-in depth), but not less than 500 mm .

2.2

Balance battery stands horizontally, using the balance parts supplied, or adjustable insulators.

The distances of the base rails must correspond to the dimensions of the cells or monobloc batteries. Check the stands for stability and all screwed and clamped joints for firm connection. Earth (ground) the stand or parts of the stand, if required. Screwed joints must be protected against corrosion.

2.3

Check cells or monobloc batteries for perfect condition (visual check, polarity).

2.4

Place cells or monobloc batteries on the stand one after another, ensuring correct polarity. For large cells it is useful to start installing the cells in the middle of the stand:

- Align cells or monobloc batteries parallel to each other. Distance between cells or monobloc batteries approx. 10 mm , at least 5 mm .
- If necessary, clean the contacting surfaces of the terminals and connectors.
- Place and screw intercell or monobloc connectors, using an insulated torque wrench (for correct torque value refer to battery operating instructions). If applicable, observe special instructions with regard to the intercell connectors (e.g. welded connectors).
- Place the series, step or tier connectors supplied and screw them together, observing the given torque values.
- Avoid short circuits! Use leads of at least 3 kV breakdown voltage or keep an air
distance of approx. 10 mm between the leads and electrically conductive parts, or apply additional insulation to the connectors. Avoid applying any mechanical force on the cell/battery poles.
- If applicable, remove transport plugs and replace by operational plugs.
- Check electrolyte level. (Observe operating instructions / commissioning instructions).
- Measure total voltage (nominal voltage: sum of open circuit voltages of the individual cells or monobloc batteries).
- If necessary sequentially number the cells or monobloc batteries in a visible place between the positive terminal of the battery and the negative terminal of the battery.
- Apply polarity signs for the battery leads.
- Attach safety marking, type lable and operating instructions in a visible place.
- If necessary, fit insulating covers for cell / monobloc connectors and terminals.

3. Cabinets

3.1

Cabinets with built-in battery:

- Install the battery cabinet at the location assigned, observing the accident prevention rules.
- Leave additional space from the wall for possible or planned cable entries.
- If applicable, remove transport protection from the built-in cells or monobloc batteries.
- Check cells or monobloc batteries for correct positioning and for any mechanical damage.

3.2

Cabinets with separately delivered cells or monobloc batteries:

- Only filled and charged cells and/or monobloc batteries (vented or valve regulated) are built into cabinets.
- Assemble cabinet, place and align at the assigned location (observe the accident prevention rules).
- Place cells or monobloc batteries in the cabinet, in accordance with the installation plan and the defined distances, connect electrically and apply markings (see point 2.4).

4. CE marking

From 1 January 1997, batteries with a nominal voltage from 75 V onwards require an EC conformity declaration in accordance with the low voltage directive ($73 / 23 / E W G$), which entails that the CE marking is applied to the battery.
The company installing the battery is responsible for supplying the declaration and applying the CE marking.

WARNING:

Prior to connecting the battery to the charger, ensure that all installation work has been duly completed.

Temperature Effects on Batteries

Battery capacity (how many amp-hours it can hold) is reduced as temperature goes down, and increased as temperature goes up. This is why your car battery dies on a cold winter morning, even though it worked fine the previous afternoon. If your batteries spend part of the year shivering in the cold, the reduced capacity has to be taken into account when sizing the system batteries. The standard rating for batteries is at room temperature - 25 degrees C (about 77 F). At approximately -22 degrees $\mathrm{F}(-27 \mathrm{C})$, battery AH capacity drops to 50%. At freezing, capacity is reduced by 20%. Capacity is increased at higher temperatures - at 122 degrees F , battery capacity would be about 12% higher.

Battery charging voltage also changes with temperature. It will vary from about 2.74 volts per cell (16.4 volts) at -40 C to 2.3 volts per cell (13.8 volts) at 50C. This is why you should have temperature compensation on your charger or charge control if your batteries are outside and/or subject to wide temperature variations. Some charge controls have temperature compensation built in (such as Morning-star) - this works fine if the controller is subject to the same temperatures as the batteries. However, if your batteries are outside, and the controller is inside, it does not work that well. Adding another complication is that large battery banks make up a large thermal mass.

Thermal mass means that because they have so much mass, they will change internal temperature much slower than the surrounding air temperature. A large insulated battery bank may vary as little as 10 degrees over 24 hours internally, even though the air temperature varies from 20 to 70 degrees. For this reason, external (add-on) temperature sensors should be attached to one of the POSITIVE plate terminals, and bundled up a little with some type of insulation on the terminal. The sensor will then read very close to the actual internal battery temperature.

Even though battery capacity at high temperatures is higher, battery life is shortened. Battery capacity is reduced by 50% at -22degrees F - but battery LIFE increases by about 60%. Battery life is reduced at higher temperatures - for every 15 degrees F over 77, battery life is cut in half. This holds true for ANY type of Lead-Acid battery, whether sealed, gelled, AGM, industrial or whatever. This is actually not as bad as it seems, as the battery will tend to average out the good and bad times. Click on the small graph to see a full size chart of temperature vs. capacity.

One last note on temperatures - in some places that have extremely cold or hot conditions, batteries may be sold locally that are NOT standard electrolyte (acid) strengths. The electrolyte may be stronger (for cold) or weaker (for very hot) climates. In such cases, the specific gravity and the voltages may vary from what we show.

Cycles vs. Life

A battery "cycle" is one complete discharge and recharge cycle. It is usually considered to be discharging from 100% to 20%, and then back to 100%. However, there are often ratings for other depth of discharge cycles, the most common ones are $10 \%, 20 \%$, and 50%. You have to be careful when looking at ratings that list how many cycles a battery is rated for unless it also states how far down it is being discharged. For example, one of the widely advertised telephone type (float service) batteries has been advertised as having a 20 -year life. If you look at the fine print, it has that rating only at 5% DOD - it is much less when used in an application where they are cycled deeper on a regular basis. Those same batteries are rated at less than 5 years if cycled to 50%. For example, most golf cart batteries are rated for about 550 cycles to 50% discharge - which equates to about 2 years.

Battery life is directly related to how deep the battery is cycled each time. If a battery is discharged to 50% every day, it will last about twice as long as if it is cycled to 80% DOD. If cycled only 10% DOD, it will last about 5 times as long as one cycled to 50%. Obviously, there are some practical limitations on this - you don't usually want to have a 5 -ton pile of batteries sitting there just to reduce the DOD. The most practical number to use is 50% DOD on a regular basis. This does NOT mean you cannot go to 80% once in a while. It's just that when designing a system when you have some idea of the loads, you should figure on an average DOD of around 50% for the best storage vs. cost factor. Also, there is an upper limit - a battery that is continually cycled 5% or less will usually not last as long as one cycled down 10%. This happens because at very shallow

Contax Nigeria Limited

cycles, the Lead Dioxide tends to build up in clumps on the positive plates rather in an even film. The graph above shows how lifespan is affected by depth of discharge. The chart is for a Concorde Lifeline battery, but all lead-acid batteries will be similar in the shape of the curve, although the number of cycles will vary.

State of Charge

State of charge, or conversely, the depth of discharge (DOD) can be determined by measuring the voltage and/or the specific gravity of the acid with a hydrometer. This will NOT tell you how good (capacity in AH) the battery condition is - only a sustained load test can do that. Voltage on a fully charged battery will read 2.12 to 2.15 volts per cell, or 12.7 volts for a 12 -volt battery. At 50% the reading will be 2.03 VPC (Volts Per Cell), and at 0% will be 1.75 VPC or less. Specific gravity will be about 1.265 for a fully charged cell, and 1.13 or less for a totally discharged cell. This can vary with battery types and brands somewhat - when you buy new batteries you should charge them up and let them sit for a while, and then take a reference measurement. Many batteries are sealed, and hydrometer reading cannot be taken, so you must rely on voltage. Hydrometer readings may not tell the whole story, as it takes a while for the acid to get mixed up in wet cells. If measured right after charging, you might see 1.27 at the top of the cell, even though it is much less at the bottom. This does not apply to gelled or AGM batteries.

"False" Capacity

A battery can meet all the tests for being at full charge, yet be much lower than it's original capacity. If plates are damaged, sulfated, or partially gone from long use, the battery may give the appearance of being fully charged, but in reality acts like a battery of much smaller size. This same thing can occur in gelled cells if they are overcharged and gaps or bubbles occur in the gel. What is left of the plates may be fully functional, but with only 20% of the plates left... Batteries usually go bad for other reasons before reaching this point, but it is something to be aware of if your batteries seem to test OK but lack capacity and go dead very quickly under load.

On the table below, you have to be careful that you are not just measuring the surface charge. To properly check the voltages, the battery should sit at rest for a few hours, or you should put a small load on it, such as a small automotive bulb, for a few minutes. The voltages below apply to ALL Lead-Acid batteries, except gelled. For gel cells, subtract .2 volts. Note that the voltages when actually charging will be quite different so do not use these numbers for a battery that is under charge.

Amp-Hour Capacity

All deep cycle batteries are rated in amp-hours. An amp-hour is one amp for one hour, or 10 amps for $1 / 10$ of an hour and so forth. It is amps x hours. If you have something that pulls 20 amps , and you use it for 20 minutes, then the amp-hours used would be 20 (amps) x .333 (hours), or 6.67 AH . The accepted AH rating time period for batteries used in solar electric and backup power systems (and for nearly all deep cycle batteries) is the " 20 hour rate". This means that it is discharged down to 10.5 volts over a 20 -hour period while the total actual amp-hours it supplies is measured. Sometimes ratings at the 6 -hour rate and 100 hour rate are also given for comparison and for different applications. The 6-hour rate is often used for industrial batteries, as that is a typical daily duty cycle. Sometimes the 100-hour rate is given just to make the battery look better than it really is, but it is also useful for figuring battery capacity for long-term backup amp-hour requirements.

State of Charge

Here are no-load typical voltages vs. state of charge
(Figured at 10.5 volts = fully discharged, and 77 degrees F). Voltages are for a 12 -volt battery system. For 24volt systems multiply by 2 , for 48 -volt system, multiply by 4 . VPC is the volts per individual cell - if you measure more than a .2 volt difference between each cell, you need to equalize, or your batteries are going bad , or they may be sulfated. These voltages are for batteries that have been at rest for 3 hours or more. Batteries that are being charged will be higher - the voltages while under charge will not tell you anything, you have to let the battery sit for a while. For longest life, batteries should stay in the green zone. Occasional dips into the yellow are not harmful, but continual discharges to those levels will shorten battery life considerably. It is important to realize that voltage measurements are only approximate. The best determination is to

Contax Nigeria Limited

measure the specific gravity, but in many batteries this is difficult or impossible. Note the large voltage drop in the last 10%.

S/No	State of Charge	12V Configuration (V)	2V Configuration (V)
1.	100%	12.7	2.12
2.	90%	12.5	2.08
3.	80%	12.42	2.07
4.	70%	12.32	2.05
5.	60%	12.20	2.03
6.	50%	12.06	2.01
7.	40%	11.9	1.98
8.	30%	11.75	1.96
9.	20%	11.58	1.93
10.	10%	11.31	1.89
11.	5%	11	1.83
11.	0%	10.5	1.75

Battery Charging

Battery charging takes place in 3 basic stages: Bulk, Absorption, and Float.
Bulk Charge - The first stage of 3-stage battery charging. Current is sent to batteries at the maximum safe rate they will accept until voltage rises to near ($80-90 \%$) full charge level. Voltages at this stage typically range from 10.5 volts to 15 volts. There is no "correct" voltage for bulk charging, but there may be limits on the maximum current that the battery and/or wiring can take.

Absorption Charge: The 2nd stage of 3-stage battery charging. Voltage remains constant and current gradually tapers off as internal resistance increases during charging. It is during this stage that the charger puts out maximum voltage. Voltages at this stage are typically around 14.2 to 15.5 volts.

Float Charge: The 3rd stage of 3-stage battery charging. After batteries reach full charge, charging voltage is reduced to a lower level (typically 12.8 to 13.2) to reduce gassing and prolong battery life. This is often referred to as a maintenance or trickle charge, since it's main purpose is to keep an already charged battery from discharging. PWM, or "pulse width modulation" accomplishes the same thing. In PWM, the controller or charger senses tiny voltage drops in the battery and sends very short charging cycles (pulses) to the battery. This may occur several hundred times per minute. It is called "pulse width" because the width of the pulses may vary from a few microseconds to several seconds. Note that for long term float service, such as backup power systems that are seldom discharged, the float voltage should be around 13.02 to 13.20 volts.

Chargers: Most garage and consumer (automotive) type battery chargers are bulk charge only, and have little (if any) voltage regulation. They are fine for a quick boost to low batteries, but not to leave on for long periods. Among the regulated chargers, there are the voltage regulated ones, such as Iota Engineering and Todd, which keep a constant regulated voltage on the batteries. If these are set to the correct voltages for your batteries, they will keep the batteries charged without damage. These are sometimes called "taper charge" - as if that is a selling point. What taper charge really means is that as the battery gets charged up, the voltage goes up, so the amp out of the charger goes down. They charge OK, but a charger rated at 20 amps may only be supplying 5 amps when the batteries are 80% charged. To get around this, Sam A\&E has come out with "smart" or multi-stage chargers. These use a variable voltage to keep the charging amps much more constant for faster charging.

